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Abstract: The evaluation of meat and fish quality is crucial to ensure that products are safe and meet the
consumers’ expectation. The present work aims at developing a new low-cost, portable, and simplified
electronic nose system, named Mastersense, to assess meat and fish freshness. Four metal oxide
semiconductor sensors were selected by principal component analysis and were inserted in an “ad
hoc” designed measuring chamber. The Mastersense system was used to test beef and poultry slices,
and plaice and salmon fillets during their shelf life at 4 ◦C, from the day of packaging and beyond
the expiration date. The same samples were tested for Total Viable Count, and the microbial results
were used to define freshness classes to develop classification models by the K-Nearest Neighbours’
algorithm and Partial Least Square–Discriminant Analysis. All the obtained models gave global
sensitivity and specificity with prediction higher than 83.3% and 84.0%, respectively. Moreover,
a McNemar’s test was performed to compare the prediction ability of the two classification algorithms,
which resulted in comparable values (p > 0.05). Thus, the Mastersense prototype implemented with
the K-Nearest Neighbours’ model is considered the most convenient strategy to assess meat and
fish freshness.

Keywords: electronic nose; food quality; MOS sensors; K-Nearest Neighbours’ algorithm (K-NN);
Partial Least Square-Discriminant Analysis (PLS-DA)

1. Introduction

The evaluation of meat and fish quality is of primary importance since producers and retailers
have to ensure that products are safe and able to meet the consumers’ expectation.

Meat and fish are highly perishable due to the influence of many post-mortem factors, so their loss
of quality (safety, nutritional, and sensory properties) is very rapid. The shelf life of these products can
be defined as the time occurring between production and spoilage, caused by biochemical reactions
and microbiological activity [1].

The commonly used methods to evaluate the spoilage status of meat and fish and the changes
associated with the loss of quality include microbiological determination and sensory analysis. The Total
Viable Count (TVC) of bacteria is recognised as an indicator of the safety evaluation of meat products
able to give an overall scenario of microbiological spoilage [2]. However, even if there are specific limits
for pathogenic bacteria presence [3], no European limit exists for TVC in meat and fish product. In Italy,
at the regional level, some attempts have been made. The Piedmont region defined safety levels based
on TVC for meat and fish products based on three classes of freshness [4]. Sensory analysis is not
always applicable, even though there are quality assessment methods for fish evaluation based on
it [5]. Microbiological and sensory analysis have some drawbacks since they are destructive, expensive,
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and require skilled personnel; moreover, microbial analysis by plate count requires long incubation
periods, thus leading to results after 2–3 days.

Some chemical compounds (alcohols, H2S, acetate, methyl ethyl ketone, dimethyl sulphide, etc.)
may be considered as spoilage indicators, but their quantitative determination involves laborious
extraction and analytical procedures; furthermore, limited information is provided [6].

Over the last few decades, important efforts have been made in order to develop non-destructive
sensing methods applicable in situ or on-line to assess the freshness and the quality of food [7,8].

Nowadays, the electronic nose (e-nose) is commonly used in numerous fields including
environmental, medical, and pharmaceutical [9]; in the food industry, this device has proven to
be very effective for a number of purposes such as quality control, process monitoring, freshness
evaluation, shelf life investigation, and authenticity assessment [10–12].

In the last twenty years, many studies have been published concerning the use of the electronic
nose to evaluate the shelf life and the quality of meat and fish products by measuring the volatile
compounds (aldehydes, ketones, esters, sulphur, and ammonia compounds) produced during storage
by microbial growth and biochemical reactions [13–15]. In many applications, MOS (Metal Oxide
Semiconductors) sensors have been applied since they are readily available on the market and, at the
same time, suitable for use due to their robustness and durability, as well as for their rapid response
and good sensitivity to volatile compounds [16]. In general, MOS sensors are highly sensitive to
aldehydes, alcohols and ketones; furthermore, by adjusting their working temperature, it is possible
to increase the sensitivity and the selectivity towards other compounds such as aromatic molecules,
terpenes, and organic acids [17].

In [18], the authors assessed the shelf life of fresh pork meat stored under refrigeration in aerobic
conditions by an electronic nose pocket device, the Food Sniffer® (ARS.LAB Inc., Redwood City,
CA, USA). The device is controlled via a Smartphone application and detects temperature, humidity,
and volatile compounds. The Food Sniffer® is an easy-to-use device, which is meant for consumer use
in specific and predefined applications.

Multivariate data analysis applied to e-nose results proved to be effective to extract relevant
information from the sensor signals improving pattern recognition [19]. A recent paper [20] reviewed
the applications of sensing techniques, including e-nose, and the chemometric approaches used for
fish freshness evaluation. The authors reported a large use of Support Vector Machine (SVM), Artificial
Neural Network (ANN), and Partial Least Square-Discriminant Analysis (PLS-DA) for the modelling
of fish freshness. Even if less is applied, K-Nearest Neighbours’ algorithm (K-NN) demonstrated to
be more reliable than SVM and ANN in classifying meat and fish quality when developing an odour
sensing system [21].

In this context, the aim of the present work was the development of a new low-cost, portable,
and simplified e-nose system, named Mastersense, operating with four MOS sensors.

The four MOS sensors were selected by Principal Component Analysis (PCA), then two different
classification methods, K-NN and PLS-DA were developed to classify the freshness of samples using
e-nose information, in line with previous authors [22].

The combination of the designed electronic nose and the classification models developed will
provide a friendly system for reliable, sensible, and specific classification of the meat/fish samples
in three freshness categories. A strong point of the device is the versatility of the acquisition system
implemented for off-line, in-line, and on-line applications. The commercial device could be adapted
to specific needs of producers and retailers who will be able to develop ad hoc models by collecting
their own data, thus enlarging the field of applicability to different meat species and cuts, as well as
to different fish species. Thus, the portable and simplified electronic nose system will be a valuable
solution to inform producers, retailers, and consumers on products safety and quality.
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2. Materials and Methods

2.1. Electronic Nose System Development

The development of the e-nose system has involved the design and the implementation of the
measuring chamber where the four MOS sensors are located, the electronic sensor boards, the electronic
motherboard and the pump, and the implementation of the acquisition system.

2.1.1. Measuring Chamber

The layout of the Mastersense measuring chamber (150 × 100 mm) with all its components is
presented in Figure 1.
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Figure 1. Layout of the measurement chamber: EV = solenoid valve; EV1 drive = control driver for
solenoid valve; EV2 drive = driver for additional solenoid valve; CN6-CN7-CN8 = connectors dedicated
for settings; FTDI = USB to Serial converter; USB = USB port; S1-S2-S3-S4 = connectors for the four
sensor’s board; MCU = microcontroller; PUMP DRIVE = pump controller; DC/DC = DC/DC 12 V out
converter for battery charge management; FLAT = Connector used for debugging; PUMP = brushless
pump (model KNF NMP 03 KPDCB-1, 3.3 Volt) for continuous 24 h operation; SW = ON/OFF switch;
DC JACK = power supply input (DC 15–36 V).

Starting from the left of Figure 1, it is possible to see a pump drawing the filtered air (during purging
time), the sample headspace (during the sampling time), and the solenoid valve (EV) controlling the
flow rate; in-between there are four holes, drilled at regular intervals, for sensor positioning. An array
of four sensors (GGS 8530, GGS 5430, GGS 2530, and GGS 10530) selected out of ten tested MOS sensors
(Table 1), produced by UST Umweltsensortechnik GmbH (Geschwenda Germany), has been inserted
in the measuring chamber [23].
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Table 1. Tested sensors and related specifications.

Sensor Name Sensor Type Sensor Sensitivity

S1 GGS 8530 Sensor for the detection of C2H5OH, with low cross-sensitivity to CH4, CO and H2
S2 GGS 5430 Sensor especially sensitive to NO2 (nitrogen dioxide) and O3 (ozone)
S3 GGS 7330 Sensor for the detection of NOX
S4 GGS 6530 Sensor for the detection of H2, with low cross-sensitivity to CH4, CO and alcohol
S5 GGS 3530 Sensor for the detection of hydrocarbonates, optimal for C1 C8-hydrocarbonate
S6 GGS 2530 Sensor with a high sensitivity to CO, H2 and C2H5OH and a low cross-sensitivity to CH4
S7 GGS10530 Sensor for the detection of selected VOCs in the trace range
S8 GGS 1530 Universal sensor with many applications
S9 GGS 4430 Sensor for NH3 (ammonia), with low cross-sensitivity to CH4, CO and H2

S10 GGS 1430 Universal sensor with many applications

Each sensor was located on a special board (60 × 20 mm) equipped with the electronics required
to regulate its temperature and to perform the measurements (Figure 2a). The electronic boards were
fixed on the measuring chamber so that each sensor, located in a specific hole, was connected to the
motherboard by a “strip” carrying the communication signals and the power supply.
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Figure 2. Sensor control board (a) and motherboard (b).

The pump consisted of a brushless motor whose electronic control (PUMP DRIVE) has been
developed “ad hoc” and positioned on the motherboard (Figure 2b) that controlled all the components:
the solenoid valve, the pump, the power supply (including the battery), and the sensor boards.

2.1.2. Acquisition System

The acquisition system has been implemented by considering three possible applications:

• Off-line mode: the control software and the pattern recognition system are installed on a PC
sending commands to the e-nose and receiving data; the connection could be wireless (WIFI) or
wired (Ethernet).

• In-line: the control software and the pattern recognition system are included directly in the e-nose
firmware. The e-nose sends the result of pattern recognition to PC to control the production line.

• On-line mode: different e-noses could be wireless connected to a cloud platform and send the
collected data to a server via an internet connection. The control software and the pattern
recognition system are in the cloud. The users will be able to access the data by a smart client
application for computer, or by mobile applications for tablet and smartphone.

All data collected by on-line or off-line mode could be stored on the cloud platform ad hoc
developed for the Mastersense.
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2.2. System Testing, Data Acquisition, and Laboration

The testing phase involved the selection and preparation of samples, the data acquisition by
headspace sampling, the data analysis, and the development of predictive models using multivariate
statistical methods.

2.2.1. Samples and Sample Preparation

Meat and fish samples were directly purchased from local retailers, in particular, beef (scottona,
aka meat of young heifer not older than 15–16 months) slices (250 g–300 g) from the long digital
extensor and long digital flexor muscles, poultry slices (400 g), European plaice fillets (250 g), and salmon
fillets (250 g), packaged in polystyrene trays wrapped with a transparent laser microperforated film
permeable to oxygen, were considered. Each tray corresponds to an independent sample, i.e., an animal,
for chicken and fish, whereas for beef at each sampling time were selected two trays containing slices
from different beef loins.

Analyses were carried out at set times during sample storage, from the day of packaging (0) or
from the day after packaging (1), beyond the expiration date as indicated on the product label and up
to the safety and quality threshold of 107–108 CFU/g reported in many studies [24] and assessed by the
TVC (as reported in Section 2.2.3). During the storage period, samples were kept at 4 ◦C, representing
the typical meat and fish storage temperature in supermarkets and grocery stores. Measurements were
replicated on several series and, at each storage time, analyses were performed, TVC, and electronic
nose analyses in duplicate/triplicate on two packages. Details of the analysed series and storage times
are shown in Table 2. For each series of products (different purchasing batch), the number of replicates
able to guarantee the analysis of two trays for the investigated sampling times was considered for
a total of 80 samples for beef, 88 samples for poultry, 72 samples for salmon, and 63 samples for
European plaice.

Table 2. Experimental design.

BEEF POULTRY SALMON EUROPEAN
PLAICE

Series
1

Series
2

Series
3

Series
1

Series
2

Series
3

Series
1

Series
2

Series
1

Series
2

Times (days)
from the day
of packaging

0 0 0 - - 0 - - - -
1 - - 1 1 1 1 1 1 1
2 - - 2 - 2 2 2 2 2
3 3 3 3 - 3 3 3 3 * 3 *
4 4 4 4 4 - 4 * 4 * 4 4
- 5 5 - 5 - 5 5 5 5
- 6 - - 6 - - - - -

7 * 7 * - 7 * 7 * - - - - -
9 - - 8 8 - 8 8 - -
8 - - 9 - - - - - -
10 10 - 10 - - - - - -
- - - - 11 - - - - -

* Expiration date indicated on the label

2.2.2. E-nose Analysis

Meat and fish samples (50 g) were placed in 250 mL airtight glass jars fitted with a pierceable
Silicon/Teflon disk in the cap. After one hour of headspace equilibration at room temperature,
the measurement started by pumping the sample headspace over the sensor surfaces for 60 s (sampling
time) during which the sensor responses were recorded; the sample headspace was withdrawn to a
flow rate of 400 mL/min, and the sampling frequency was 1 Hz. After sample analysis, sensors were
purged for 180 s with filtered air (purging time), then, prior to the next sample injection, the sensor
baselines were re-established for 5 s. The sensor response corresponded to the fractional value obtained



Sensors 2019, 19, 3225 6 of 15

by subtracting the resistance signal of the baseline (R0-ohm) from the resistance signal of the sensors
(R-ohm) and dividing by the resistance signal of the baseline (R0), thus providing a dimensionless,
normalised response. Sensor responses were acquired at 50 s of sampling and statistically elaborated.
The sensor selection and the time required for sampling, purging, and data acquisition were determined
through preliminary tests.

2.2.3. Microbial Analysis

The TVC was carried out as reported in the UNI EN ISO 4833-1: 2013 [25]. The International
Organization of Standardization (ISO) standard specifies a horizontal method for the enumeration of
microorganisms that are able to grow and form colonies in a solid medium after aerobic incubation at
30 ◦C. The method is applicable to samples in the area of food and feeds production and handling.
An overview of the TVC results is reported as the mean value (CFU/g of sample) for each sampling
time, i.e., the average of the replicates and trays.

2.2.4. Data Analysis and Predictive Model Development

Microbiological results were subjected to one-way analysis of variance (ANOVA) considering the
storage times as factors and microbial plate counts as dependent variables. When a significant effect
(p < 0.05) was found from ANOVA, a multiple comparison post-hoc test, Fisher’s Least Significant
Difference (LSD), was applied at a 95% confidence level. The storage times resulting were not
significantly different by the LSD test (p > 0.05) were considered as belonging to the same group.

To select the four out of 10 sensors to be implemented in the Mastersense system, e-nose data from
10-MOS sensor-based e-nose datasets were transformed by column autoscaling and then explored by
PCA. PCA is an unsupervised exploratory procedure that allows to visualising, in a reduced space,
the relationships between objects and variables, thanks to graphical outputs (i.e., score plot, loading
plot and bi-plot) [26]. In our case, the inspection of the biplot allowed to understand the variables
influence in the object dispersion and the selection of the four most informative ones, i.e., the four
sensors to be implemented in the portable system. PCAs were than performed on the data collected
from the 4-MOS sensor-based e-nose devices to confirm the distribution of the samples according to
freshness level was confirmed.

In order to develop classification models, two classification approaches were used: 4-MOS
sensor-based e-nose: K-NN and PLS-DA. K-NN is a simple non-linear classification approach based
on the Euclidean distance and not requiring any assumptions on the underlying data distribution.
In detail, K-NN predicts the class membership of a sample on the basis of the class of the K nearest
sample(s) in the multidimensional space; in this work a K value of 3 was applied, which should be
considered a good compromise as a small value of K allows high influence of noise and a large value
makes the model computation expensive for real applications [27].

PLS-DA applies the PLS regression bases to a Y dummy and completes a rotation of the projection
to latent variables searching for the maximum separation among classes. The Y dummy matrix is
constructed so that it has a number of columns equal to the number of classes, and each column is filled
with ones and zeros, being one when the object belongs to the considered class and zero otherwise [28].

Before the development of the classification models, each dataset was split by the Kennard–Stone
algorithm [29] into a training and a test set composed of about 70% and 30% of the original samples,
respectively: beef (55 samples for training, 25 sample for test), poultry (58 samples for training,
30 sample for test), plaice (43 samples for training, 20 sample for test), and salmon (47 samples for
training, 25 sample for test). The training dataset was used for the classification rule development and
the internal validation by cross-validation with five cancellation groups, whereas the test set was used
to test the model’s performance in prediction.

The predefined classes were used as a-priori information (Y) to build classification models able
to predict meat and fish freshness based on the e-nose data collected from the selected sensors (X).
The applied classifiers (KNN and PLS-DA) were evaluated by two metrics: sensitivity and specificity
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computed as reported in Table 3 on the bases of four-factor: True Positive (TP), False Positive (FP),
True Negative (TN) and False Negative (FN). Sensitivity expresses the model capability to correctly
recognize samples belonging to the considered class; whereas specificity describes the model capability
to reject samples belonging to all the other classes correctly. Sensitivity and specificity can assume
values between 0 and 1, where 1 indicates perfect classification and 0 no correct prediction. For PLS-DA
models, ROC (Receiver Operating Characteristic) curves were used to assess and optimize the specificity
and sensitivity of each class with different thresholds.

Table 3. Generic confusion matrix identifying true positive (TP), false positive (FP), true negative (TN),
false negative (FN), and the reference equation to calculate sensitivity (SENS) and specificity (SPEC).

A-Priori

Class 1 Class 2

Predicted
Class 1 TP FP SENS = TP

(TP+FN)

Class 2 FN VN SPEC = TN
(TN+FP)

Furthermore, weighted sensitivity and specificity were calculated for each model by the equation:

Xweighted =
(m1 f1 + m2 f2 + m3 f3 + m4 f4)

f1 + f2 + f3 + f4

where mi is the SENS or SPEC for the i-class and fi is the i-class numerosity.
Classification performances were compared by a particular case of Fisher’s sign test, named

McNemar’s test, that verifies if two models have the same error rate [30]. For further details about the
statistical test, the reader is referred to Grassi et al. (2018) [31].

All the data analyses were performed under Matlab environment (R2017b, The Mathworks, Inc.,
Natick, MA, USA) eventually using the PLS toolbox (ver. 8.5, Eigenvector Research, Inc., Manson, WA,
USA) software package.

3. Results and Discussion

3.1. Sensor Selection

In order to select four MOS sensors to be inserted into the portable and simplified e-nose
system, a device embedded with an array of 10 MOS sensors was used for the preliminary experiments.
In Table 2, the details of the tested sensors purchased from UST Umweltsensortechnik GmbH (Germany)
are reported.

Figure 3 shows the sensor responses collected during the sampling phase on meat (beef and
poultry) and fish (salmon and plaice) samples on the first day of analysis (a) and the day corresponding
to the expiration date of the product (b). The x-axis represents the sampling time while the sensor
response is reported on the y-axis.

As can be seen in Figure 3, during sampling, the sensor responses gradually increased, reaching a
plateau after 25–30 s. From the histograms, representing the responses collected after 50 s of sampling,
it is possible to notice that the sensor responses are very low for the fresh products (first day of analysis)
while, at the end of their commercial life (seven days for beef and poultry; three days for plaice,
and four days for salmon), the responses of S2, S6, and S7 sensors were significantly increased.

A further elaboration of the collected data by PCA (figures not shown) allowed the selection of the
sensors more suitable to follow the evolution of the products’ headspace during storage. In particular,
the S1 (GGS 8530) sensor has been selected for its ability to discriminate fresh meat and fish samples,
while S2 (GGS 5430), and S6 (GGS 2530), S7 (GGS 10530) sensors characterise samples at the end of their
commercial life; moreover, they are those increasing more significantly their response signals during the
storage of the samples. In detail, GGS 8530 has the ability to detect hydrogen and aliphatic compounds
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working to a temperature range of 150–260 ◦C, GGS 5430 is sensitive to ammonia compounds (working
temperature 220–350 ◦C), GGS 2530 has high sensitivity and low specificity (working temperature
250–300 ◦C); GGS 10,530 is sensitive to sulpher compounds (working temperature 360–450 ◦C).
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3.2. Microbiological Analysis and Class Identification

In this work, three classes of freshness, corresponding to a traffic light system, were established.
In order to define the three classes, the results of the TVC collected for all products (beef, poultry,
salmon, and plaice) were submitted to one-way ANOVA and to the LSD test to identify groupings
between samples. In Tables 4 and 5, the results of ANOVA and the LSD test are reported.



Sensors 2019, 19, 3225 9 of 15

Table 4. One-way ANOVA and Least Significant Difference (LSD) test applied on microbiological data
(Total Viable Count, CFU/g of product) collected on beef and poultry samples.

BEEF POULTRY

Series Time
(Days) CFU/g ANOVA

LSD * Group Series Time
(Days) CFU/g ANOVA

LSD * Group

1 0 1.60 × 104 a Unspoiled 1 1 3.40 × 104 ab Unspoiled
1 1 1.76 × 105 a Unspoiled 1 2 4.03 × 105 b Unspoiled
1 2 6.50 × 103 a Unspoiled 1 3 1.24 × 106 bc Acceptable
1 3 4.70 × 104 a Unspoiled 1 4 1.25 × 107 bc Acceptable
1 4 2.25 × 105 a Unspoiled 1 7 2.62 × 108 d Spoiled
1 7 8.36 × 106 b Acceptable 1 8 2.51 × 109 e Spoiled
1 8 1.54 × 108 d Spoiled 1 9 5.71 × 109 f Spoiled
1 9 2.37 × 109 e Spoiled 1 10 1.66 × 1010 f Spoiled
1 10 9.20 × 109 e Spoiled 2 1 4.00 × 105 b Unspoiled
2 0 1.50 × 104 a Unspoiled 2 4 3.60 × 106 bc Acceptable
2 3 2.52 × 105 a Unspoiled 2 5 7.00 × 107 c Spoiled
2 4 5.54 × 105 a Unspoiled 2 6 2.83 × 108 d Spoiled
2 5 5.27 × 106 b Acceptable 2 7 1.94 × 109 e Spoiled
2 6 2.08 × 107 c Spoiled 2 8 2.60 × 109 e Spoiled
2 7 1.56 × 108 d Spoiled 2 11 7.57 × 108 de Spoiled
2 10 5.15 × 109 e Spoiled 3 0 3.35 × 104 ab Unspoiled
3 0 2.00 × 105 a Unspoiled 3 0 4.67 × 103 a Unspoiled
3 3 4.22 × 106 b Acceptable 3 1 1.25 × 104 ab Unspoiled
3 4 3.30 × 106 b Acceptable 3 1 2.53 × 104 ab Unspoiled
3 5 2.04 × 108 d Spoiled 3 2 2.03 × 104 ab Unspoiled

* Different letters in each column indicate significant
difference at 95% confidence levels as obtained by LSD test.

3 2 2.43 × 104 ab Unspoiled
3 3 2.25 × 104 ab Unspoiled

Table 5. One-way ANOVA and LSD test applied on microbiological data (TVC, CFU/g of product)
collected on plaice and salmon samples.

EUROPEAN PLAICE SALMON

Series Time
(days) CFU/g ANOVA

LSD * Group Series Time
(days) CFU/g ANOVA

LSD * Group

1 1 7.20 × 106 b Acceptable 1 1 6.09 × 104 a Unspoiled
1 1 1.13 × 105 a Unspoiled 1 1 8.05 × 104 a Unspoiled
1 2 1.19 × 107 b Acceptable 1 2 1.46 × 105 a Unspoiled
1 2 1.75 × 107 b Acceptable 1 2 1.10 × 105 a Unspoiled
1 3 2.07 × 108 e Spoiled 1 3 1.36 × 107 b Acceptable
1 3 1.87 × 108 e Spoiled 1 3 1.10 × 107 b Acceptable
1 4 1.53 × 108 d Spoiled 1 4 1.49 × 106 ab Unspoiled
1 4 1.96 × 108 e Spoiled 1 4 1.30 × 107 bc Acceptable
1 5 9.67 × 107 c Spoiled 1 5 1.85 × 107 bc Acceptable
1 5 1.24 × 108 c Spoiled 1 5 2.90 × 107 bc Acceptable
2 1 3.23 × 106 ab Unspoiled 1 8 4.15 × 108 d Spoiled
2 1 2.14 × 106 ab Unspoiled 1 8 3.41 × 108 d Spoiled
2 1 1.77 × 106 ab Unspoiled 2 1 1.56 × 105 a Unspoiled
2 2 1.18 × 107 b Acceptable 2 1 1.04 × 105 a Unspoiled
2 2 1.68 × 107 b Acceptable 2 2 6.10 × 105 ab Unspoiled
2 3 2.31 × 107 b Acceptable 2 2 5.10 × 104 a Unspoiled
2 3 1.52 × 107 b Acceptable 2 3 8.52 × 105 ab Unspoiled
2 4 2.14 × 108 e Spoiled 2 3 1.17 × 106 ab Unspoiled
2 4 2.91 × 108 f Spoiled 2 4 3.40 × 107 c Acceptable
2 5 1.51 × 109 h Spoiled 2 4 2.17 × 107 c Acceptable
2 5 5.25 × 108 g Spoiled 2 5 1.01 × 108 d Spoiled

* Different letters in each column indicate significant
difference at 95% confidence levels as obtained by LSD test.

2 5 1.23 × 108 d Spoiled
2 8 2.69 × 109 e Spoiled
2 8 8.57 × 108 de Spoiled

Considering beef samples (Table 4), the LSD test has identified the presence of five groups (a; b; c;
d; e); since the number of groups to be formed was equal to three, a further grouping was applied
according to the following criterion:
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Unspoiled samples: ANOVA group “a”; microbial count < 106

Acceptable samples: ANOVA group “b”; 106 < microbial count < 107

Spoiled Samples: ANOVA “c; d; e”; microbial count > 107

The same procedure was performed also for poultry, salmon, and plaice samples and the final
groupings are reported in Tables 4 and 5 (columns Group).

Being the identified groups acceptable from a scientific point of view [21–24] and in accordance
with the guide lines defined by the Piedmont region for safety levels based on TVC for meat and fish
products [4], they were upgraded to the rank of classes: green class-unspoiled; yellow class-acceptable,
red class-spoiled; the predefined classes are summarised in Table 6.

Table 6. Grouping of the analysed samples into three classes.

BEEF POULTRY EUROPEAN
PLAICE SALMON

(CFU/g) (CFU/g) (CFU/g) (CFU/g)

Green ≤106
≤106

≤3 × 106
≤1.5 × 106

Yellow 106 < x ≤ 107 106 < x ≤ 1.2 × 107 3 × 106 < x ≤ 5 × 107 1.5 × 106 < x ≤ 5 × 107

Red >107 >1.2 × 107 >5 × 107 >5 × 107

3.3. PCA of Electronic Nose Data

In Figure 4, the PCA-biplots of the four sensor responses collected at 50 s of sampling on all
the analysed samples are reported: beef (a), poultry (b), plaice (c), and salmon (d). The samples
are coloured on the basis of the previously defined classes: green-unspoiled; yellow-acceptable;
and red-spoiled. As can be seen, almost all the samples cluster according to the three predefined
classes in the PC1 vs. PC2 plane; moreover, in the case of beef (Figure 4a) and poultry (Figure 4b),
unspoiled (green) and acceptable (yellow) samples assume similar PC1 scores, whereas spoiled (red)
samples are characterised by higher PC1 scores and are more dispersed along PC1 and PC2. However,
for both products, the overlap between classes appears to be very limited, and the unspoiled samples
(green) are never confused with the samples a-priori defined as spoiled (red). Similar considerations
can be drawn for plaice (Figure 4c) and salmon (Figure 4d) fillets; thus, demonstrating the synergic
effect of the selected sensors to discriminate the products suitable for consumption from those that are
acceptable and above all, not suitable.

3.4. Classification Model Development (KNN and PLS-DA)

3.4.1. K-NN Models

K-NN models (K = 3) were developed for all products and in Table 7, the metrics calculated for
each model in the calibration, cross-validation, and prediction are reported.

Concerning beef, in the cross-validation phase, sensitivity of 0.94, 0.77, 0.75 was reached for
unspoiled, acceptable, and spoiled classes, respectively. A few cases of misclassification were reported
in cross-validation, leading to a specificity 0.86 for the unspoiled class, 0.90 for the acceptable class,
and 1.00 for the spoiled class. Good performances were obtained in prediction. A few acceptable
samples were misclassified; this result is understandable as this class is characterised by an intermediate
freshness level, which could be more easily confused with the neighbour classes.

Concerning poultry, model cross-validation gave good sensitivity values, i.e., 0.92, 0.70, and 0.91 for
unspoiled, acceptable, and spoiled classes, respectively (Table 7). Even better, the specificity calculated
for the cross-validation was 0.86, 0.90, and 1.00, respectively, for the three classes. The poultry K-NN
model did not perform as good as the beef model in prediction, mainly because the four samples
in the spoiled class and one sample in the unspoiled class were predicted as acceptable, leading to
poor sensitivity of these classes (0.84 and 0.66, respectively) and reduced specificity for the acceptable
class (0.82).



Sensors 2019, 19, 3225 11 of 15
Sensors 2019, 19, x FOR PEER REVIEW 11 of 16 

 

 
Figure 4. Principal Component Analysis-biplots of e-nose data collected on beef (a) poultry (b) plaice 
(c) and salmon (d) samples classified as unspoiled (US)-green; acceptable (A)-yellow, spoiled (S)-red. 

3.4. Classification Model Development (KNN and PLS-DA) 

3.4.1. K-NN Models 

K-NN models (K = 3) were developed for all products and in Table 7, the metrics calculated for 
each model in the calibration, cross-validation, and prediction are reported. 

Concerning beef, in the cross-validation phase, sensitivity of 0.94, 0.77, 0.75 was reached for 
unspoiled, acceptable, and spoiled classes, respectively. A few cases of misclassification were 
reported in cross-validation, leading to a specificity 0.86 for the unspoiled class, 0.90 for the acceptable 
class, and 1.00 for the spoiled class. Good performances were obtained in prediction. A few acceptable 
samples were misclassified; this result is understandable as this class is characterised by an 
intermediate freshness level, which could be more easily confused with the neighbour classes. 

Concerning poultry, model cross-validation gave good sensitivity values, i.e., 0.92, 0.70, and 0.91 
for unspoiled, acceptable, and spoiled classes, respectively (Table 7). Even better, the specificity 
calculated for the cross-validation was 0.86, 0.90, and 1.00, respectively, for the three classes. The 
poultry K-NN model did not perform as good as the beef model in prediction, mainly because the 
four samples in the spoiled class and one sample in the unspoiled class were predicted as acceptable, 
leading to poor sensitivity of these classes (0.84 and 0.66, respectively) and reduced specificity for the 
acceptable class (0.82). 
  

Figure 4. Principal Component Analysis-biplots of e-nose data collected on beef (a) poultry (b) plaice
(c) and salmon (d) samples classified as unspoiled (US)-green; acceptable (A)-yellow, spoiled (S)-red.

Table 7. Results of the K-NN models developed for the e-nose data collected for beef, poultry, European
plaice, and salmon. Sensitivity, specificity percentage, and p-values obtained for each class (Unspoiled,
US; Acceptable, A; Spoiled, S) in calibration, cross-validation, and prediction of the external test set.

CALIBRATION CROSS-VALIDATION PREDICTION

Class US A S US A S US A S

BEEF

Samples 34 13 8 34 13 8 2 3 20
Sensitivity 0.91 0.77 0.75 0.94 0.77 0.75 0.100 0.67 0.95
Specificity 0.86 0.88 1.00 0.86 0.90 1.00 0.95 0.95 1.00

p-values 0.91 0.81 0.86 0.91 0.81 0.86 1.00 0.80 1.00

POULTRY

Samples 37 10 11 37 10 11 3 2 25
Sensitivity 0.89 0.70 0.91 0.92 0.70 0.91 0.66 1.00 0.84
Specificity 0.86 0.89 1.00 0.86 0.92 1.00 1.00 0.82 1.00

p-values 0.91 0.78 1.00 0.91 0.78 1.00 0.91 0.90 1.00

EUROPEAN PLAICE

Samples 11 14 18 11 14 18 1 7 12
Sensitivity 1.00 0.79 0.94 1.00 0.71 0.89 1.00 0.75 1.00
Specificity 0.97 0.97 0.92 0.97 0.93 0.88 1.00 1.00 0.78

p-values 0.92 0.92 0.90 0.92 0.91 0.89 1.00 1.00 0.95

SALMON

Samples 29 13 5 29 13 5 4 8 13
Sensitivity 0.97 0.85 0.80 0.93 0.85 0.80 0.75 1.00 0.92
Specificity 0.89 0.94 1.00 0.89 0.91 1.00 1.00 0.88 1.00
p-values 0.93 0.84 1.00 0.93 0.83 1.00 0.96 0.96 1.00
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European plaice K-NN model gave robust results in the cross-validation with sensitivity ranging
from 1.00 to 0.71 and specificity from 0.97 to 0.88 (Table 7). Optimal performances were obtained in
prediction. Indeed, for almost all the classes, sensitivity and specificity were 1.00. However, two out of
eight samples a-priori identified as acceptable were erroneously predicted as spoiled. A type II error,
i.e., rejecting a sample which is then classified as inadequate, confirms the real-life feasibility of the
model which will not bring any safety risk.

With regard to the internal validation of the salmon model, good sensitivity was reached, and was
0.93, 0.85, and 0.80 for the three classes (Table 7). The specificity in the cross-validation was quite high,
i.e., 0.89, 0.91, and 1.00, respectively, for the unspoiled, acceptable, and spoiled class. In the prediction,
high performance was obtained (>0.88), except for the sensitivity of the unspoiled class (0.75).

Despite being one of the simplest approaches for classification, K-NN has shown to perform quite
good in the tested application (p-values in prediction > 0.80), leading to models with sensitivity in the
prediction between 0.83 and 0.92, and specificity between 0.88 and 0.99.

3.4.2. PLS-DA Models

PLS-DA models were developed to test if a more complex approach, based on the optimisation of
covariance between X and Y, could lead to better classification performance. The model performance
in terms of sensitivity and specificity in calibration, cross-validation, and prediction are reported in
Table 8. ROC curves were used to assess and optimise the specificity and sensitivity of each class with
different thresholds, being 0.41, 0.34, 0.44, and 0.32 for beef, poultry, plaice, and salmon, respectively.

Table 8. Results of PLS-DA models developed for the e-nose data collected for beef, poultry, European
plaice, and salmon. Sensitivity, specificity percentage, and p-values obtained for each class (Unspoiled,
US; Acceptable, A; Spoiled, SP) in calibration, cross-validation, and prediction of the external test set.

CALIBRATION CROSS-VALIDATION PREDICTION

Class US A S US A S US A S

BEEF

Samples 34 13 8 34 13 8 2 3 20
Sensitivity 0.82 0.69 0.88 0.82 0.54 0.88 1.00 0.67 1.00
Specificity 0.91 0.86 0.94 0.81 0.86 0.94 1.00 1.00 0.80

p-values 0.93 0.80 0.80 0.90 0.80 0.80 1.00 1.00 0.95

POULTRY

Samples 37 10 11 37 10 11 3 2 25
Sensitivity 0.81 0.80 0.91 0.84 0.70 0.91 0.67 1.00 0.92
Specificity 1.00 0.83 0.96 1.00 0.85 0.94 1.00 0.89 1.00

p-values 1.00 0.80 0.76 1.00 0.80 0.76 1.00 0.80 1.00

EUROPEAN PLAICE

Samples 11 14 18 11 14 18 1 7 12
Sensitivity 1.00 0.93 0.83 1.00 0.79 0.78 1.00 1.00 0.92
Specificity 1.00 0.90 0.96 1.00 0.86 0.88 1.00 0.92 1.00

p-values 1.00 0.81 0.93 1.00 0.73 0.82 1.00 0.88 1.00

SALMON

Samples 29 13 5 29 13 5 4 8 13
Sensitivity 0.97 0.92 1.00 0.97 0.85 0.40 1.00 0.75 100
Specificity 1.00 0.97 0.98 1.00 0.88 0.95 1.00 1.00 0.83
p-values 1.00 0.92 0.83 1.00 0.90 0.80 1.00 1.00 0.86

The internal validation (cross-validation) of the beef model performed well for the unspoiled
and the spoiled classes reaching sensitivity above 0.82 and specificity higher than 0.80; however,
the sensitivity of the acceptable class was quite low (0.54). The same considerations are valid for the
external validation (aka. prediction) (Table 8). Similarly, Linear Discriminant Analysis (LDA) and
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Quadratic Discriminant Analysis (QDA) models were developed to discriminate unspoiled for spoiled
beef (cut off 6 log10 CFU/g of TVC) [32] reaching overall classification accuracy in cross-validation
up to 0.89 and 0.93 for linear and quadratic models, respectively. In the literature, more complex
nonlinear approaches were also investigated: Artificial Neural Network (ANN) classification reached
an accuracy in the cross-validation ranging from 83 to 100% [33]; by Support Vector Machine, a correct
classification rate of 98.8% has been obtained [13].

Concerning poultry, the cross-validation model performed similarly to the K-NN algorithm with
sensitivity between 0.70 and 0.92 and specificity ranging from 0.85 to 1.00. Better performances were
recorded in prediction, achieving both a sensitivity and specificity higher than 0.91. (Table 8).

The European plaice PLS-DA model gave robust results in cross-validation with sensitivity ranging
from 0.78 to 1.00 and specificity from 0.86 to 1.00 (Table 8). Optimal performances were obtained
in prediction.

The PLS-DA model developed for the salmon samples resulted in less robust results than the
corresponding K-NN classifier. In particular, it failed in classifying correctly the samples belonging
to the spoiled class by cross-validation (sensitivity of 0.40). However, the model performance in
prediction was quite high. A few studies present in literature discuss e-nose implementation for quality
assessment of fish products. Among them, PLS regression models have been developed for microbial
count prediction, obtaining high R2 (0.96) and low error (0.32 log10 CFU/g) in prediction [34].

3.4.3. Classification Results Comparison

To better compare the K-NN and PLS-DA performances, the global sensitivity and specificity
reached in prediction are reported in Table 9. Predicted sensitivity of PLS-DA models resulted in equal
or higher than the percentages reached by K-NN models, whereas the specificity percentages did not
follow a clear trend. To objectively compare the models’ quality, a McNemar’s test was performed on
the predicted classes of each model. With the McNemar’s test, the accuracy for predicting the a-priori
defined classes (Y) of K-NN and PLS-DA models has been evaluated. In all cases the classification
loss of each model in prediction was quite low. Indeed, the K-NN error ranged from 0.167 to 0.080;
whereas, the PLS-DA error was slightly lower (0.040–0.100) (Table 9). The misclassification error is
complementary to the model accuracy; thus, the overall accuracy (%) of the K-NN models ranged from
83.3% to 92%, whereas for PLS-DA models it was between 96% and 90%.

Table 9. Prediction results of K-NN and PLS-DA models for beef, poultry, European plaice, and
salmon in term of weighted Sensitivity (%) and weighted Specificity (%) and their comparison by
McNemar’s test.

Model Beef Poultry European
Plaice Salmon

Sensitivity KNN 0.92 0.83 0.91 0.92
PLS-DA 0.96 0.90 0.95 0.92

Specificity KNN 0.97 0.93 0.92 0.96
PLS-DA 0.84 0.99 0.97 0.91

E
KNN 0.12 0.17 0.10 0.08

PLS-DA 0.04 0.10 0.05 0.08

p-values 0.25 0.25 0.625 1

H0: KNN = PLS-DA
Equal

predictive
accuracies

Equal
predictive
accuracies

Equal
predictive
accuracies

Equal
predictive
accuracies

E, classification loss that summarises the accuracy of the classes predicted by k-NN or PLS-DA, p-value,
p-value of the test, H0, Hypothesis test.

Notwithstanding the classification loss differences, the models developed by the two different
algorithms were comparable (p > 0.05) in terms of prediction capabilities.
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4. Conclusions

The new portable and simplified 4-MOS sensor-based e-nose system, named Mastersense
implemented with a classification algorithm (K-NN) developed in the present study was able to
correctly classify meat (beef and poultry) and fish (plaice and salmon) samples into three freshness
classes defined by TVC (green-unspoiled, yellow-acceptable, red-spoiled).

The classification results obtained in prediction demonstrated the ability of Mastersense to
correctly distinguish and classify meat and fish samples on the basis of their freshness. Even though
some samples belonging to intermediate freshness level were misclassified, none of the samples with
risky microbial concentration (red) was classified as acceptable for consumption. This reveals that the
model can be safely used for real applications.

As a future perspective, to overcome the weakness of the developed system and to adapt the
device to specific needs of producers and retailers, reduced sampling times could be experimented and
ad hoc classification models developed, thus enlarging the device applicability.
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